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Published online: 4 June 2003 – c© Società Italiana di Fisica / Springer-Verlag 2003
Communicated by J. Äystö

Abstract. We calculate total and differential muon capture rates on nickel and tin isotopes ranging from
the proton dripline to the neutron dripline. The total rates decrease as the neutron number increases due
to the combined effect of gradual blocking of available final-state neutron levels and of decreased phase
space. The ordering of single-particle levels determines when blocking becomes important. We show that
the total capture rates thereby are sensitive to the evolution of nuclear structure along an isotope chain.

PACS. 24.30.Cz Giant resonances – 23.40.-s Beta decay; double beta decay; electron and muon capture
– 23.40.Hc Relation with nuclear matrix elements and nuclear structure

1 Introduction

Nuclear-structure physics and weak-interaction physics
have since long been intertwined, weak interactions being
used to study nuclei and nuclei being used in detailed tests
of the weak interaction. The study of nuclei far from the
line of beta-stability is nowadays a major subject within
nuclear structure and it is therefore natural to ask how
different weak-interaction probes can contribute to this
study. Our aim in this paper is to investigate in detail
the case of muon capture on nuclei. Muon capture on sta-
ble nuclei has been studied in detail for many years and
is treated in several books and review papers [1–3]. The
weak-interaction aspects of the captures will not change
when going to unstable nuclei and most of the theoreti-
cal formalism can therefore be taken over unchanged. In
this paper we calculate total capture rates and the final-
state excitation spectrum for the isotope chains of Ni and
Sn. Adding the information from a previous [4] calcula-
tion on the Ca chain, we discuss to what extent the mea-
surements of these quantities can elucidate the nuclear-
structure changes along the chains. Our results indicate
that muon capture experiments should be considered at
the next-generation radioactive beam facilities. Experi-
mental investigation of nuclear muon capture can so far
only be done on stable or long-lived isotopes, but the pos-
sibility of extending experiments to short-lived isotopes is
being actively investigated at the moment (see, e.g., [5,6]).
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2 Model description

Our calculations are based on the random phase approxi-
mation (RPA) which, despite its simplicity, has been pre-
viously shown to describe muon capture on nuclei quite
satisfactorily [7–9]. As in [8] we adopt an RPA which dis-
tinguishes between proton and neutron degrees of freedom
for the particle and hole states, i.e. for muon capture our
model changes a proton particle in the parent nucleus to
a neutron hole state in the daughter. Our parent ground
states are described by the lowest independent particle
model state, assigning partial occupancy to the last shell
if this is not completely occupied. The same shell is in-
cluded among the hole states, but appropriately partially
blocked [10]. The partial occupation formalism necessarily
assumes a spin/parity assignment of Jπ = 0+ for the par-
ent ground state. Therefore, we will restrict our studies in
the following to even nickel and tin isotopes. The particle
and hole states have been determined from aWoods-Saxon
potential with the radius parameter taken as 1.22 fm·A1/3,
the diffuseness parameter a is 0.53 fm and the strength of
the spin-orbit term VLS is adjusted to give the correct
spin-orbit splitting for p and f states (VLS is −8.95 MeV
for Ni and −9.00 MeV for Sn). The depth of the potential
has been adjusted to reproduce the proton and neutron
separation energies in the parent nucleus. If necessary,
the neutron hole energies were slightly shifted to repro-
duce the Q-value of the reaction. As residual interaction
we used the Landau-Migdal force given in [11]. As shown
in [8], very similar results are obtained when using this
force and a finite range force based on the Bonn potential
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and therefore we do not expect the total muon capture
rates to be sensitive to the chosen residual interaction.
For the nuclear binding energies we adopted the experi-
mental masses. If these were not known, we used the mass
compilation of Goriely et al. [12].

In our calculations, we considered all multipole tran-
sitions with λ ≤ 4 and both parities. From shell model
calculations it is well established that the Gamow-Teller
(GT) strength requires an additional quenching factor [13,
14] which we take from [15] as (0.7)2. For the nickel iso-
topes 58,60,62,64Ni the total strength is known experimen-
tally (collected in [16]) and agrees well with the shell
model results. For these nuclei we adjust our calculated
GT strength to the data. Hence, the Ikeda sum rule is
also modified by the same factor. For the other multipole
operators, there exists no firm indication of a need for
such additional quenching factors. For the q-dependence
of the nuclear form factors we use the standard dipole
form. We note that we adopt the appropriate multipole
operators for finite momentum transfer [1]. Thus, only in
the limit q → 0 do our 0+ and 1+ operators reduce to the
Fermi and Gamow-Teller operators, respectively. Never-
theless, for brevity we will in the following refer to the
momentum-dependent 0+ and 1+ multipole operators as
Fermi and Gamow-Teller operators.

The muon wave function in the atomic (1s) orbital
has been derived by solving the Dirac equation for an ex-
tended charge distribution. In general, the RPA can lead
to spurious center-of-mass excitations, which could mix
with isoscalar transitions to 1− states and thereby add
artificial strength. As we solve the RPA eigenvalue prob-
lem in a complex model space, the center-of-mass contri-
butions can be identified by their imaginary energy eigen-
value. We remove all states with dominating imaginary
components, in this way also eliminating some of the real
isoscalar 1− strength. But as muon capture is dominated
by isovector excitations, the eliminated strength is negli-
gibly small and does not affect our calculated rates.

Muon capture also depends on the induced pseu-
doscalar hadronic weak current. At the free nucleon level
the corresponding coupling constant is determined by the
Goldberger-Treiman relation [17]

FP (q2) =
2MpFA(0)
m2

π − q2
, (1)

where mπ is the pion mass and FA(0) ≡ gA = 1.25.
(In muon capture one often uses a dimensionless quan-
tity gP = mµFP (q2) at the relevant momentum transfer
q2 � −0.9m2

µ, such that gP � 8.4 for free protons.) In
nuclear medium FP can be again renormalized, and this
renormalization does not necessarily obey the Goldberger-
Treiman relation [18]. We have shown in our previous
work that the total muon capture rates are not sensitive
enough to the various choices of FP renormalization. Con-
sequently, throughout this work we use the Goldberger-
Treiman relation.

3 Results

We have studied muon capture for even nickel and tin iso-
topes, spanning the range from the proton dripline (48Ni,
100Sn) to isotopes close to the (unknown) neutron dripline
(86Ni, 160Sn) in both chains. The nickel isotope chain in-
cludes 3 double-magic nuclei (48Ni, 56Ni, 78Ni), while the
neutron magicity for 68Ni is currently controversially dis-
cussed (e.g., [19,20]). In the tin isotope chain, the nuclei
100Sn and 132Sn are identified as double-magic. For all
nickel and tin isotopes a proton magicity is commonly ac-
cepted. This fact clearly eases a description of the muon
capture process within an RPA formalism.
As benchmarks it is useful to recall the structure of the

various isotopes within the independent particle model,
which we adopt for the description of the uncorrelated
parent ground state. For the nickel isotopes, the protons
close the f7/2 subshell. Between 48Ni and 56Ni, the neu-
trons fill the f7/2 orbitals, while the rest of the (pf) shell
is filled up to 68Ni. The g9/2 orbital is occupied in 78Ni.
For even heavier nickel isotopes, neutrons are moved into
the d5/2 and s1/2 orbitals. On the basis of these simple
structure considerations one observes that Fermi transi-
tions are only possible in muon capture on even nickel
isotopes up to 54Ni, while Gamow-Teller transitions are
Pauli blocked at 68Ni. In the tin isotopes, the protons
close the g9/2 subshell. In 100Sn the neutrons have the
same configuration. Between 100Sn and 120Sn the neutrons
fill the rest of the orbitals in the (gds) shell, followed by
the h11/2 intruder orbital, which is closed in 132Sn. For
heavier nuclei the neutrons occupy the other levels in the
(hfp) shell. For all tin isotopes Fermi transitions are for-
bidden. The Gamow-Teller transitions are blocked, once
the g7/2 neutron orbitals are occupied, which happens, in
our parametrization, for 114Sn. We use the fact that the
muon capture on 48,50,52,54Ni allows Fermi transitions by
adjusting the neutron hole energies in these nuclei such as
to reproduce the Isobaric Analog State in the daughter.
For 58,60,62Ni the muon capture rate is known exper-

imentally [21]. Our calculated rates are 6.44 × 106 s−1

for 58Ni, 5.18 × 106 s−1 for 60Ni and 4.65 × 106 s−1 for
62Ni. These results agree nicely with the data (6.11(10)×
106 s−1, 5.56(10)×106 s−1 and 4.72(10)×106 s−1 for 58Ni,
60Ni, 62Ni, respectively). Our complete set of RPA results
for the total muon capture rate on the nickel isotopes is
plotted in fig. 1. It has long been recognized that the ex-
perimentally known muon capture rates are well described
by a rather simple scaling rule. This Primakoff rule de-
scribes the capture rate Λ on a nucleus with mass number
A and neutron number N as [22]

Λ(A,Z) = Z4
effX1

(
1− X2

(A − Z)
2A

)
. (2)

Here, the second term in the parentheses corrects for Pauli
blocking in a final nucleus with neutron excess. The use
of an effective charge number Zeff rather than Z accounts
for corrections needed as the nuclear and muonic radii are
comparable [3]. The parameters X1,X2 are determined
to reproduce the trends of the capture rates on many
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Fig. 1. The calculated total muon capture rate in even nickel
isotopes (stars) is plotted versus (A − Z)/2A. The rates agree
with experiment (boxes) for stable nuclei. The linear depen-
dence expected from the Primakoff rule is violated for nuclei
away from the line of stability, for proton-rich nuclei this is due
to increased phase space (rates corrected for this are shown
by triangles), for neutron-rich nuclei it is due to contributions
from higher-order weak transitions.
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Fig. 2. Fractional contribution of different multipoles to the
calculated total capture rate on even nickel isotopes. The top
panel displays transitions of even parity (0�ω, 2�ω), the bot-
tom panel the ones of odd parity (1�ω, 3�ω). See the text for
a discussion of the trends visible.

beta-stable nuclei, reaching out to neutron excesses of
(A−Z)/A = 0.61. Reference [21] gives these parameters as
X1 = 170 s−1 and X2 = 3.13. As is demonstrated in fig. 1,
the Primakoff rule with this parametrization agrees quite
nicely with our RPA results for the “non-exotic” nickel iso-
topes between 58Ni and 68Ni. However, for isotopes, which
are more proton rich than 58Ni or more neutron rich than
68Ni, our calculations predict muon capture rates which
are larger than predicted by the Primakoff parametriza-
tion to beta-stable nuclei. As we will now discuss, the rea-
sons for these observed deviations are different for proton-
rich and neutron-rich nuclei.

Figure 2 shows the various multipole contributions to
the total muon capture rates on the nickel isotopes. As
observed already previously for other nuclei (e.g., [8,9,4]),
muon capture is dominated by first-forbidden transitions,
which account for nearly 70% of the total rate for all nickel
nuclei. However, the relative weight among the 3 spin-
dipole contributions (Jπ = 0−, 1−, 2−) changes signifi-
cantly with increasing neutron number. We note that the
relative contribution of the 0− multipole increases within
the nickel isotope chain from 48Ni, while the 2− contri-
bution shows the opposite behavior. This behavior can be
understood by looking at the excitation spectrum for these
multipoles which is shown in fig. 3 for the 3 double-magic
nickel isotopes. For 48Ni there is a noticeable 2− transi-
tion at low excitation energies (E ∼ 5 MeV), which cor-
responds to a proton-neutron d3/2 → f7/2 single-particle
transition, while the collective spin-dipole 2− resonance is
widely spread in energy (E ≈ 12–28 MeV). Between 48Ni
and 56Ni the neutron f7/2 orbital gets filled. This blocks
the d3/2 → f7/2 transition, which finally vanishes in 56Ni.
The main collectivity of this multipole centers now around
the proton-neutron f7/2 → g9/2, g7/2 excitations, centered
in 56Ni at excitation energies around E ∼ 8 MeV and
18 MeV, where the difference reflects the spin-orbit split-
ting between the two g orbitals (which in our parametriza-
tion is nearly 10 MeV). In 78Ni the f7/2 → g9/2 tran-
sition is blocked, thus the collectivity for the 2− multi-
pole now resides around one large (f7/2 → g7/2) tran-
sition at E ∼ 10 MeV. The strength in 78Ni between
E ≈ 15–30 MeV reflects already higher-order (3�ω) con-
tributions. These higher-order transitions are also present
in the other isotopes, but are here of less relative impor-
tance, as the first-forbidden transitions are larger. We also
note that, with increasing neutron number, the multipole
strength systematically moves to smaller excitation ener-
gies. This has been already observed and explained in [23].
The other first-forbidden multipoles can be understood by
the same dominant collective transitions, where we note
that the d3/2 → f7/2 single-particle transitions are not
possible for 1−, 0− multipoles. This exclusive presence of
d3/2 → f7/2 single-particle transitions in the 2− multipole
and its blocking when the neutron f7/2 shell is getting
filled, explains the relative decrease of the 2− multipole
rate between 48Ni and 56Ni. With respect to the collec-
tive transitions, we observe that for the 1− multipole both
proton-neutron f7/2 → g9/2, g7/2 excitations are allowed,
while the first is forbidden for the 0− multipole. This ex-
plains why the relative 1− contribution, analogously to
the 2− rate, decreases between 68Ni and 78Ni, when the
g9/2 neutron orbitals are filled. Such a blocking does not
occur for the 0− multipole, hence its relative importance
increases for these nuclei. We again observe higher-order
(3�ω) contributions to the capture rate, which, for the 1−
multipole becomes relatively important in isotopes heavier
than 68Ni.

We also observe that for the 1− multipoles the two
centroids of the collective transitions are shifted in energy
relative to those of the 2− multipole. This reflects the
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Fig. 3. Excitation spectra for the Jπ = 1+, 0−, 1−, 2− multipole operators for the three double-magic nickel nuclei 48Ni, 56Ni
and 78Ni. The RPA results have been folded with a Gaussian distribution of width 1 MeV.

effect of the RPA residual interaction [24], which lowers
the 2− centroids relative to the 1−, 0− centroids. For the
0− multipole, only f7/2 → g7/2 transitions are possible.

Figure 3 also shows the excitation function for the 1+
multipole. For 48Ni, 56Ni the main strength corresponds
to the neutron-proton f7/2 → f5/2 transition, which gets
blocked successively by filling of the (pf) shell in 68Ni.
In 48Ni, the strength at E ∼ 2 MeV corresponds to
the f7/2 → f7/2 transition. Furthermore, we observe 1+
strengths in this nucleus between 20 and 40 MeV, which
is shifted to lower energies with increasing neutron excess.
This strength reflects 2�ω transitions, which in nickel iso-
topes heavier than 68Ni (e.g., 78Ni) dominate the 1+ mul-
tipole as the 0�ω GT transitions are Pauli forbidden. We
note here, that large-scale shell model calculations predict
some correlation mixing of (pf) shell orbitals with the
g9/2 orbital which promotes about one neutron into the
g9/2 level for nuclei like 68,70Ni [20], thus unblocking the
GT transitions in these nuclei. However, the corrections of
such transitions are too small to significantly change the
conclusions drawn here.

Now we come back to the observation that our calcu-
lated muon capture rates for very proton-rich and neutron-

rich nickel isotopes are significantly larger than the pre-
dictions of the Primakoff rule. The parameters for this
scaling law correspond to the rates for the 3 stable nickel
isotopes 58,60,62Ni, for which data are available. This linear
scaling law predicts the muon capture rate to vanish for
nickel isotopes heavier than A ∼ 78. Figure 1 shows that
the simple linear scaling breaks down for A > 68 and that
there is still a sizable muon capture rate for nickel isotopes
heavier than 78Ni. To understand this behavior we note
that (see fig. 2) the rates for 58,60,62Ni are dominated by
the first-forbidden transitions and, moreover, there are no
significant variations in the relative contributions of these
multipoles between 58Ni and 68Ni as none of the dom-
inant proton-neutron transitions for these multipoles are
affected by the changes of the nuclear structure (i.e. filling
of the (pf) shell neutron orbitals) in these isotopes. How-
ever, the f7/2 → g9/2 transitions, which contribute sizably
to the data, are getting successively blocked beyond 68Ni.
For such nuclei the muon capture rate is dominated by the
f7/2 → g7/2 transitions and the higher-order contributions
to the first-forbidden (and the 0+, 1+) multipoles, which
all do not vanish, and are responsible for the deviations
from the simple linear parametrization of the rates with
neutron excess, as expected from the data determined for
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Fig. 4. As fig. 1, but for tin isotopes. Experimental data are
only available for natural tin (box). The thin line is a linear fit
to the calculated rates for stable tin isotopes.

stable isotopes. It is noteworthy that the total capture
rate on an extremely neutron-rich nucleus like 78Ni is still
about 20% of the rate on the stable isotopes 60,62Ni.
Another quantity, which obviously affects the total

rate, is the phase space, which scales like ∼ (mµ +
Q − Eex)2, where mµ = 105.6 MeV is the muon mass,
Q the reaction Q-value and Eex the nuclear excita-
tion energy in the daughter nucleus. For the stable
nickel isotopes Q is slightly negative (Q = −0.38 MeV,
−2.88 MeV, −5.31 MeV for 58Ni, 60Ni, 62Ni, respectively),
while the average excitation energy can be estimated as
Eex ∼ 15–20 MeV in these nuclei. This leads to rather
mild variations of the phase space for the stable isotopes.
For more neutron-rich nuclei the Q-value gets increas-
ingly more negative, which is counterbalanced somewhat
by the average excitation energy, which moves to lower
energies. For more proton-rich nuclei, the trend is oppo-
site. Here, the nickel isotopes are unstable against elec-
tron capture, implying a positive Q-value, but the aver-
age excitation energy of the various multipole transitions
is shifted upwards in excitation energies compared to the
stable isotopes. However, the relevant difference Q − Eex

increases in these nuclei, enlargening the phase space for
proton-rich nuclei compared to the stable ones. In fact,
if we separate the dominating energy dependence of the
phase space from the muon capture rate by multiplying
the rate for the proton-rich nuclei with mass number A
by [(mµ +Q−Eex)A/(mµ +Q−Eex)A=60]2, the capture
rates for these nuclei nicely follow the linear Primakoff
scaling rule, as shown in fig. 1. This shows that the ob-
served deviations of the rate for proton-rich nuclei from
the linear rule are mainly phase space related and that
nuclear-structure effects do not play a large role here.
As a second isotope chain we have studied the muon

capture on the tin nuclei between the double-magicN = Z
nucleus 100Sn and the extremely neutron-rich nucleus
160Sn, which is close to the neutron dripline for this iso-
tope chain. Our RPA results for the total muon cap-
ture rates are summarized in fig. 4. Experimentally the
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Fig. 5. As fig. 2, but for tin isotopes.

capture rate is known for natural tin: Λ = 10.6 ×
106 s−1. This agrees very nicely with our estimate of
Λth = 11.2 × 106 s−1, which we have obtained by av-
eraging our RPA rates Λi for the stable tin isotopes,
i.e. Λth =

∑
i aiΛi where the index i runs over i =

112, 114, 115, 116, 117, 118, 119, 120, 122, 124 and ai is the
percentage of the respective isotope in natural tin. (The
rates for odd-A isotopes have not been calculated, but are
extrapolated from the linear fit given below. They only
contribute 17% to the weighted rate and are not expected
to change the estimate appreciably). The standard Pri-
makoff parametrization gives a reasonable fit to our tin
muon capture rates. We note that the RPA results for
the stable isotopes follow nearly perfectly the straight line
of eq. (2) if the two parameters are slightly modified from
their standard values; a fit withX1 = 181.2 andX2 = 3.05
is also shown in fig. 4.
Like for the nickel isotopes, we observe that the calcu-

lated muon capture rates for the proton-rich (i.e. A < 112)
and neutron-rich (i.e. A > 132) nuclei are larger than
predicted by the linear Primakoff parametrization(s). The
reasons are the same as identified for the nickel isotopes.
Our muon capture rates on the tin isotopes are bro-

ken down into the dominant multipole contributions in
fig. 5. The first-forbidden transitions contribute around
60% of the rate for the tin isotopes lighter than 132Sn. For
heavier isotopes the 0+ and, in particular, the 1+ tran-
sitions become increasingly important and, for A > 140
they supply a larger portion of the total capture rate than
the first-forbidden transitions. We note that the partial
0+, 1+ rates correspond to 2�ω transitions, as the allowed
GT proton-neutron g9/2 → g7/2 transitions are essentially
Pauli blocked for tin isotopes beyond A = 114. How-
ever, the 2�ω multipoles are virtually unaffected when
the (h9/2i13/2fp) neutron orbitals get filled beyond 132Sn.
This is, of course, different for the first-forbidden tran-
sitions. At first, the h11/2, s1/2, d5/2 neutron orbitals are
rather close in energy and hence strongly mixed in the
tin isotopes 114Sn to 132Sn. The associated blocking of
the g9/2 → h11/2 transitions reduces the relative partial
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Fig. 6. The single-particle level ordering in our model for neu-
tron levels relevant for the tin isotope chain is shown for two
values of the diffuseness parameter, a = 0.53 fm and 1.0 fm.

1−, 2− rates. A similar blocking in the 0−, 1− multipoles,
now related to the g9/2 → h9/2 transition is observed in
the isotopes beyond A > 140, for which the neutron levels
h9/2, i13/2, p3/2 are strongly mixed.
In a seminal paper, Dobaczewski et al. [25] pointed

out that in very neutron-rich nuclei a neutron skin might
develop increasing the diffuseness of the nuclear surface.
As a consequence, the spin-orbit potential, whose radial
dependence is proportional to the derivative of the central
Woods-Saxon potential, should be reduced in neutron-rich
nuclei. Such a reduction will significantly affect the single-
particle structure in these nuclei. It is speculated that in
very neutron-rich nuclei the shell structure might resem-
ble again the one of the harmonic oscillator rather than
the one of an oscillator with a strong spin-orbit splitting,
as encountered for stable nuclei. We have explored which
effects a change of the diffuseness parameter and, relat-
edly, of the spin-orbit potential has on the muon capture
rates for very neutron-rich tin isotopes. Guided by ref. [25]
we adopt the diffuseness parameter to a = 1.0 fm, rather
than our standard value of a = 0.53 fm. The resulting
changes in the single-particle structure are shown in fig. 6.
Clearly, the reduction of the spin-orbit potential moves
the h11/2 orbit up in energy compared to the d3/2, s1/2

orbitals. While for a = 0.53 fm these 3 orbitals are nearly
degenerate and a strong shell gap develops to the f7/2

orbital, the h11/2 orbital moves between the two adja-
cent shells for the larger diffuseness parameter. For the
following discussion, however, it is more important, that
the h9/2 and i13/2 orbitals are also pushed up in energy.
In particular, we find the p orbitals and the f5/2 orbital
below the h9/2 orbitals for the Woods-Saxon parametriza-
tion with a = 1.0 fm. The consequences for the muon
capture rates are shown in fig. 7. The capture rate for the
tin isotopes between 140Sn and 160Sn is noticeably larger
for a = 1.0 fm than for a = 0.53 fm. The reason is as fol-
lows: For the a = 0.53 fm parametrizations, the neutron
h9/2 levels are filled for the isotopes between A = 140 and
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Fig. 7. The total muon capture rates calculated for the
neutron-rich tin isotopes are shown for two different values
of the diffuseness parameter, a = 0.53 fm and 1.0 fm. As
explained in the text the difference between the two calcu-
lations is related to the different single-particle level ordering
(see fig. 6).

150. This strongly blocks the proton-neutron g9/2 → h9/2

transitions, which dominate the first-forbidden responses
and reduces the capture rates. However, for a = 1.0 fm the
blocking of these dominant transitions occurs for the iso-
topes A > 152. As a consequence, the total muon capture
rates are predicted to be noticeably larger for tin isotopes
A ∼ 145, if the development of a neutron skin occurs and
leads to the reduction of the spin-orbit potential. This con-
clusion ties in very well with our explanation above of how
the capture rate develops in general with neutron excess
and it underlies that accurate measurements of the rate
can be sensitive to the development of nuclear structure.

4 Discussion

Already the previous calculations on muon capture on cal-
cium isotopes [4] showed that extrapolation to unstable
nuclei of the Primakoff formula fitted to stable nuclei gives
a bad fit. However, the range of isotopes investigated there
was more limited than what is possible for nickel and tin,
and the results obtained here point in a much more di-
rect way to the filling of orbits as the crucial ingredient in
understanding the development of capture rates with neu-
tron number. With proper account taken for the effective
charge Zeff we would expect to see similar effects when
varying instead the proton number in an isotone chain.
The dependence on the neutrino phase space, that ex-

plains the deviation from the simple Primakoff rule for
proton-rich nuclei, cf. fig. 1, is included in the original
formulation of the rule [22]. Since the derivation explic-
itly assumed that the contributions from higher multipoles
(d-waves and above for the outgoing neutrino) are small,
it is also not surprising that the formula fails for very
neutron-rich nuclei. Reviews of nuclear muon capture con-
sistently point out that the rates fluctuate systematically
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even for stable nuclei [2,21,3], but we have not encoun-
tered earlier suggestions for how these systematic fluctu-
ations are related to nuclear-structure questions. We note
that measurements of the capture rates for the individ-
ual stable tin isotopes could be interesting, since the rates
are predicted to decrease linearly with (A−Z)/2A with a
slope slightly different from the one obtained in the global
fit in [21]. However, to clearly see the effects from filling of
different orbits one probably needs to include data from
several stable isotope series or to include also unstable
isotopes (the latter would give a more unambiguous test).
It might nevertheless be valuable to have an approx-

imate formula that could be used for a rough prediction
of capture rates over larger regions of the nuclear chart.
By combining non–energy-weighted and energy-weighted
sum rules Goulard and Primakoff [26] derived the follow-
ing more complex fitting formula:

Λ(A,Z) = Z4
effG1

[
1 +G2

A

2Z
− G3

A − 2Z
2Z

−G4

(
A − Z

2A
+

|A − 2Z|
8AZ

) ]
. (3)

(The absolute signs in the last term are often neglected
when treating only stable nuclei, but will be important in
the general case.) This expression should include higher-
order contributions as well as take the neutrino phase
space into account. We have fitted this expression to the
calculated values for the Ca, Ni and Sn chains from the
present paper and ref. [4]. The four parameters turn out
to be statistically very correlated, i.e. many different pa-
rameter sets will give an identically good fit to the rates,
so we have somewhat arbitrarily (but guided by the best
fit in [3]) put G3 = 0 and get for the other parameters
G1 = 168, G2 = 0.40, G4 = 4.71. With these parameters
the Goulard-Primakoff formula reproduces the calculated
rates within a factor 2, typically better (it is clear from
fig. 7 that we cannot expect a much better fit due to lo-
cal nuclear-structure effects), although with a tendency
to underestimate the rates for proton-rich nuclei. It could
therefore be used for a first guess for capture rates for
neutron-rich nuclei, at least for nuclei between Ca and Sn.
We have here only treated even-even nuclei. There is a

known [3] odd-even Z effect in total capture rates, so the
extension to odd-even and odd-odd systems might also
turn out to give structure information. It might also be
interesting to look at nuclei away from magic numbers
where the occupancy numbers for the single-particle levels
are more smeared out. It is not clear to what extent this
could wash out the structure effects we have found here.
More involved theoretical models are probably needed for
such investigations.

In conclusion, our results indicate that interesting
nuclear-structure information, namely the filling sequence
of different orbits, might be probed even from the very
simplest measurement on muon capture on unstable nu-
clei, that of the total muon capture rate. Even more infor-
mation would be available if experiments could proceed a
step further and measure the differential rates, but this
has only been done in a quite limited way so far on stable
isotopes [3] and will take longer to accomplish.
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